#09 Precision Execution of Bispecifics at Scale from Design to Delivery (On Demand)

Novel therapeutic modalities such as bispecific antibodies are increasingly being explored as more effective alternatives to monoclonal antibodies for a range of diseases. Therapeutics such as bispecifics, can have a combinatorial effect by targeting two antigens,  resulting in treatments with enhanced utility, higher efficacy, fewer side effects and less resistance compared to mAbs.

Generating a bispecific antibody, which is correctly and stably paired, is a major production concern. Many solutions require significant changes to native antibody structure, which increases antibody complexity and forces adaptation of downstream processes. While a various platforms have been developed to mitigate Heavy-Light chain (HC-LC) mispairing, there are many other rate limiting steps for efficiently expressing these molecules in a CHO system. bYlok® technology is a design engineering approach that stabilise the interaction between the HC and LC, essentially removing the mispairing problem whilst retaining a more natural antibody structure.

This presentation will introduce you to a mechanistic review of the bispecific pipeline to demonstrate how a various tools and technologies can enable you execute bispecifics.  Case studies will be presented to show how the bYlok® technology can be used to stabilise and select for novel bispecifics from a panel of parental immunotherapeutic mAbs. Our data demonstrates that correct heterodimerisation can be achieved consistently and how standard downstream purification processes can be used during production.

Seminar Information
Date Presented:
April 07, 2022 11:00 AM Eastern
Length:
1 hour
Register Now
In order to access this program after registering, a TAS account will be provided for you based on the information you have entered.

To access your account after your purchase, use the My Account links on the left hand side of this page to login using the information your provide here.
According to our records there is already a TAS account using the email address you have provided.

To continue with your registration please enter your account password. If you do not know your account password you can retrieve it here: Forgot Password?
First Name:
Last Name:
Email:
Confirm Email:
Organization:
Country:
Product:
On-Demand
The email address you have entered has an existing TAS account.

Please enter your password in the field below. Forgot Password?

Email:
Password:
Country:
Billing Address:
City:
State:
State/Province:
Zip:
Expiration: 
Precision Execution of Bispecifics at Scale from Design to Delivery

Novel therapeutic modalities such as bispecific antibodies are increasingly being explored as more effective alternatives to monoclonal antibodies for a range of diseases. Therapeutics such as bispecifics, can have a combinatorial effect by targeting two antigens,  resulting in treatments with enhanced utility, higher efficacy, fewer side effects and less resistance compared to mAbs.

Generating a bispecific antibody, which is correctly and stably paired, is a major production concern. Many solutions require significant changes to native antibody structure, which increases antibody complexity and forces adaptation of downstream processes. While a various platforms have been developed to mitigate Heavy-Light chain (HC-LC) mispairing, there are many other rate limiting steps for efficiently expressing these molecules in a CHO system. bYlok® technology is a design engineering approach that stabilise the interaction between the HC and LC, essentially removing the mispairing problem whilst retaining a more natural antibody structure.

This presentation will introduce you to a mechanistic review of the bispecific pipeline to demonstrate how a various tools and technologies can enable you execute bispecifics.  Case studies will be presented to show how the bYlok® technology can be used to stabilise and select for novel bispecifics from a panel of parental immunotherapeutic mAbs. Our data demonstrates that correct heterodimerisation can be achieved consistently and how standard downstream purification processes can be used during production.

Speaker Information
Lisa Prendergast   [ view bio ]
Individual topic purchase: Selected