Best Practices in BLI and its Application in Screening of a Broadly Neutralizing Antibody of Snake Venoms

Biolayer interferometry (BLI) is gaining popularity for protein and small molecule quantitation and kinetics research. The new advancements in biosensors, ease of use, reproducibility and low cost is driving its adoption. Even though BLI is one of the easiest of the tools, as with many other techniques, getting the best data depends on optimization of some key experimental factors. This webinar will discuss the best practices in BLI and result of such implementation by way of an example of screening of a broadly neutralizing antibody of snake venoms.

Snake envenomation results in over 100,000 deaths and 300,000 permanent disabilities in humans annually. Contemporary antivenoms are produced from the polyclonal serum of venom-immunized livestock and are specific to a single or narrow genetic range of related snakes. Could a broadly neutralizing monoclonal antibody, or a cocktail of a few broad components, provide protection from diverse snake venoms? Centi-3FTX-D09, originating from the B-cell memory of a human subject with an extensive history of diverse snake venom exposure, recognized a conserved neutralizing epitope of 3-finger toxins (3FTXs), a dominant snake neurotoxin. Four crystal structures of Centi-3FTX-D09 in complex with 3FTXs from mamba, taipan, krait, and cobra revealed the mechanism of broad neutralization to be epitope mimicry of the interface between these neurotoxins and their native host target, the nicotinic acetylcholine receptor. Centi-3FTX-D09 provided in-vivo protection against diverse 3FTXs and, in combination with the phospholipase inhibitor varespladib, protection against whole venom challenge for diverse, genetically distinct, elapid species.

Live Webcast Information
Start Time:
August 18, 2022 12:00 PM Eastern
11:00 AM Central, 10:00 AM Mountain, 9:00 AM Pacific
Add to Calendar:
Estimated Length:
1 hour
Registration Time Remaining:
4 days, 6 hours
Registration Fee:
Free
Register Now
In order to access this program after registering, a TAS account will be provided for you based on the information you have entered.

To access your account after your purchase, use the My Account links on the left hand side of this page to login using the information your provide here.
According to our records there is already a TAS account using the email address you have provided.

To continue with your registration please enter your account password. If you do not know your account password you can retrieve it here: Forgot Password?
First Name:
Last Name:
Email:
Confirm Email:
Company:
Country:
The email address you have entered has an existing TAS account.

Please enter your password in the field below. Forgot Password?

Email:
Password:
Country:
Billing Address:
City:
State:
State/Province:
Zip:
Expiration: 
Best Practices in BLI and its Application in Screening of a Broadly Neutralizing Antibody of Snake Venoms

Biolayer interferometry (BLI) is gaining popularity for protein and small molecule quantitation and kinetics research. The new advancements in biosensors, ease of use, reproducibility and low cost is driving its adoption. Even though BLI is one of the easiest of the tools, as with many other techniques, getting the best data depends on optimization of some key experimental factors. This webinar will discuss the best practices in BLI and result of such implementation by way of an example of screening of a broadly neutralizing antibody of snake venoms.

Snake envenomation results in over 100,000 deaths and 300,000 permanent disabilities in humans annually. Contemporary antivenoms are produced from the polyclonal serum of venom-immunized livestock and are specific to a single or narrow genetic range of related snakes. Could a broadly neutralizing monoclonal antibody, or a cocktail of a few broad components, provide protection from diverse snake venoms? Centi-3FTX-D09, originating from the B-cell memory of a human subject with an extensive history of diverse snake venom exposure, recognized a conserved neutralizing epitope of 3-finger toxins (3FTXs), a dominant snake neurotoxin. Four crystal structures of Centi-3FTX-D09 in complex with 3FTXs from mamba, taipan, krait, and cobra revealed the mechanism of broad neutralization to be epitope mimicry of the interface between these neurotoxins and their native host target, the nicotinic acetylcholine receptor. Centi-3FTX-D09 provided in-vivo protection against diverse 3FTXs and, in combination with the phospholipase inhibitor varespladib, protection against whole venom challenge for diverse, genetically distinct, elapid species.

Speaker Information
Joel Christian Andrade  [ view bio ]
Jacob Glanville  [ view bio ]
Ben Osborn  [ view bio ]
Individual topic purchase: Selected